27 April 2006

Systems Programming
Assemblers — Part 3-3
Program Blocks

Prof. Dr. Hani Mahdi
Department of Computer Science
Al-Isra University, Amman, Jordan

Assembler Design

2.1 Basic Assembler Functions
2.2 Machine Dependent Assembler Features
instruction formats and addressing modes
program relocation
2.3. Machine Independent Assembler Features
literals
symbol-defining statements
expressions
program blocks
control sections and program linking
L These are related to:
Programmer convenience
Software environment
Assembler directives are widely used
to support these features

April 2006 Systems Programming Assemblers - Hani Mahdi — based on Beck's Book “System Software” — Chapter 2 2

Program Blocks and Control Sections

Although the source program logically contains subroutines,
data area, etc, they were assembled into a single block of
object code in which the machine instructions and data
appeared in the same order as they were in the source
program.
To provide flexibility:
Program blocks
Segments of code that are rearranged within a single object
program unit
Control sections

Segments of code that are translated into independent object
program units

April 2006 Systems Programming Assemblers - Hani Mahdi — based on Beck's Book “System Software” — Chapter 2 3

Program Blocks

Program blocks are the Segments of code that are
rearranged within a single object program unit
As an example, three blocks are used:
default: executable instructions
CDATA: all data areas that are less in length
CBLKS: all data areas that consists of larger blocks
of memory
The assembler directive USE indicates which
portions of the source program belong to the
various blocks.

April 2006 Systems Programming Assemblers - Hani Mahdi — based on Beck's Book “System Software” — Chapter 2

27 April 2006

Using USE

Assembler directive USE indicates which portions (Block) of
the source program belong to the various blocks
USE [blockname]
At the beginning, the default block is assumed.
If no USE statements are included,
the entire program belongs to this single block
Example:

92 USE CDATA ;begin block named CDATA
103 USE CBLKS ;begin block named CBLKS
183 USE ;resume the default block

April 2006 Systems Programming Assemblers - Hani Mahdi — based on Beck's Book “System Software” — Chapter 2

Program with Multiple Program Blocks

At the beginning, the default block is assumed.

April 2006 Systems Programming Assemblers - Hani Mahdi — based on Beck's Book “System Software” — Chapter 2

Program with Multiple Program Blocks

27 April 2006

/ﬁ‘ Resume the default block ‘

Resume the CDATA block

April 2006 Systems Programming Assemblers - Hani Mahdi — based on Beck's Book “System Software” — Chapter 2

Program with Multiple Program Blocks

/ﬁ‘ Resume the default block

‘ Resume the CDATA block

April 2006 Systems Programming Assemblers - Hani Mahdi — based on Beck's Book “System Software” — Chapter 2

Program Blocks

Each program block may actually contain several separate
segments of the source program.

The assembler will logically rearrange these segments to
gather together the pieces of each block.

The result is the same as if the programmer had physically
rearranged the source statements to group together all the
source lines belonging to each block.

April 2006 Systems Programming Assemblers - Hani Mahdi — based on Beck's Book “System Software” — Chapter 2

Program Blocks Advantages

To satisfy the contradictive goals:
Program readability is better if data areas are
placed in the source program close to the
statements that reference them.
Large buffer area is moved to the end of the object
program
Using the extended format instructions or base
relative mode may be reduced. (lines 15, 35, and 65)
Placement of literal pool is easier
LTORG is used to make sure the literals are placed
ahead of any large data areas (line 253)

April 2006 Systems Programming Assemblers - Hani Mahdi — based on Beck's Book “System Software” — Chapter 2 10

27 April 2006

How to Rearrange Codes
into Program Blocks

Pass 1
Maintain a separate LOCCTR for each program block
initialized to 0 when the block is first begun
saved when switching to another block
restored when resuming a previous block

Assign to each label an address relative to the start of the
block that contains it

Store the block name or number in the SYMTAB along
with the assigned relative address of the label

— LOCCTR for each block at the end of Pass1 indicates the
block length as the latest value of

Assign to each block a starting address in the object
program by concatenating the program blocks in a
particular order

April 2006 Systems Programming Assemblers - Hani Mahdi — based on Beck's Book “System Software” — Chapter 2 1

How to Rearrange Codes
into Program Blocks
Pass 2

Calculate the address for each symbol relative to the
start of the object program by adding
the location of the symbol relative to the start of its block
the assigned starting address of this block

April 2006 Systems Programming Assemblers - Hani Mahdi — based on Beck's Book “System Software” — Chapter 2 12

Object Program with Multiple Program Blocks

Loc/Block

0: default
1: CDATA
2: CBLKS

\ No block number because MAXLEN is an absolute symbol
April 2006 Systems Program = = = 13

27 April 2006

Object Program with Multiple Program Blocks

RLOOFP

April 2006 Systems Programming Assemblers - Hani Mahdi — based on Beck's Book “System Software” — Chapter 2 14

Object Program with Multiple Program Blocks

SUBROUTINE TO WRITE RECORD FROM BUFFER

WRREC
WLOOP
0060 0O
0063 0
0007 1
0007 . 454F46
000A 1 ¥ 05
255
April 2006 Systems Programming Assemblers - Hani Mahdi — based on Beck's Book “System Software” — Chapter 2 15

Summary of Assembler Operations

Pass 1

ISeparate LOCCTR for each block, initialized to 0
ISave and restore LOCCTR values when switching between two blocks

Each label is assigned an address relative to the start of the block that contains
it, and label address is stored with block number in SYMTAB

Constructs a table that contains the starting addresses and lengths for all blocks

Pass 2

Generate address for each symbol relative to the start of the object program

by access SYMTAB, and add the location of the symbol to the block starting address

April 2006 Systems Programming Assemblers - Hani Mahdi — based on Beck's Book “System Software” — Chapter 2

27 April 2006

Table Example for Program Blocks
At the end of Pass 1:

Block name | Block number | address | Length

(default) 0 0000 0066

CDATA 1 0066 000B

CBLKS 2 0071 1000
Symbol Address | Bock number
LENGTH 0003 1

April 2006 Systems Programming Assemblers - Hani Mahdi — based on Beck's Book “System Software” — Chapter 2 17

Example of Address Calculation

In Pass 2

20 0006 O LDA LENGTH 032060

The value of the operand (LENGTH)
Address 0003 relative to Block 1 (CDATA)
—>address 0003+0066=0069 relative to program

—>address 0069-0009=0060 relative to PC,
L in which the address of PC relative to program is
0009+0000=0009

April 2006 Systems Programming Assemblers - Hani Mahdi — based on Beck's Book “System Software” — Chapter 2

Object Program

It is not necessary to physically rearrange the generated code in
the object program to place the pieces of each program block
together.

The assembler just simply insert the proper load address in
each Text record.

HCOPY 000000001071

000000, 1 720634B2021,0320602900003320064820383F2FEE0320530F2056010003

TO0001EQ90F20484B20293E203F

TO0002 / .\Bﬂ lOﬂB&(J('J_}-’--’-LI\?S 10 l(J(J(I;_I'." 2038332FFADB2032A00433200857A02ERA50

T;\iJUUUQ 4093B2FEAL3201E4F0000

(LF1

TO0004D198410772017E32018332FFAS3A016DF2012B8503B2FERAF0000

L45LFLE05

27 April 2006

EQ00000
April 2006 Systems Programming Assemblers - Hani Mahdi — based on Beck's Book “System Software” — Chapter 2 19
Program Program loaded
am Object ram in memo
Source progr ject prog Y nelaiive
BI k Line address
ocks] — oo
Loaded in Outautt(1) } Detaultil)
| Detauitiny / —{o027
M emO ry same Dafaulti2) —pl Delaulti2)
70| o R
g order /' 5 1 0040
CDATA(Z
| CDATA[1} e Delaulti3)
1 |
Defauit{3) I —
1 CBLKS(1) COATAT)
125 - sl —— n
/ COATA[3) .\“ COATA(Z)
/i e
/| etaunizy COATAR)
/ 0071
Not present in
object program .0 Rearrangement
185 COATAZ) through loading
210
— CBLKS(1)
Dotault(3)
. | SE— |
253 COATA()
| L 1070
April 2006 Systems Programming Assemblers - Hani Mahdi — based on Beck's Book “System Software” — Chapter 2 20

